Hasilpembagian dua bilangan bulat yang berbeda tanda adalah bilangan bulat negatif . Secara umum dapat dituliskan sebagai berikut: Contoh : 169 : 13 = 13 (-500) : (-25) = 20 (-99) : 11 = -9; 125 : (-5) = -25 . C. MENYELESAIKAN OPERASI HITUNG CAMPURAN PADA BILANGAN BULAT . Dalam menyelesaikan operasi hitung bilangan bulat ada 2 hal yang harus
hBqkr0S.
- Adjarian, kali ini kita akan mempelajari tentang operasi hitung bilangan bulat untuk perkalian dan pembagian. Masih ingat apa itu bilangan bulat? Di dalam matematika ada berbagai jenis bilangan, salah satunya adalah bilangan bulat. Bilangan bulat adalah bilangan yang terdiri atas nol, bilangan bulat positif, serta bilangan bulat negatif. Nah, bilangan bulat ini bisa dijumlahkaan, dikurangi, dikalikan, dan dibagi, Adjarian. Namun, untuk setiap operasi hitung ada aturan tersendiri. Tidak terkecuali untuk operasi hitung bilangan bulat dalam perkalian dan pembagian. Supaya lebih jelas, yuk, kita pelajari bersama! "Bilangan bulat adalah salah satu jenis bilangan di dalam matematika yang terdiri dari nol dan bilangan bulat positif juga negatif." Baca Juga Jenis-Jenis Bilangan dan Contohnya Perkalian Bilangan Bulat 1. Asosiatif
ďťżB. Operasi Hitung Bilangan Bulat1. Operasi Penjumlahan dan Pengurangan Bilangan BulatPenjumlahan Bilangan BulatPenjumlahan yang melibatkan bilangan-bilangan bernilai kecil dapat diselesaikan menggunakan garis bilangan. Akan tetapi, penjumlahan yang melibatkan bilangan-bilangan yang bernilai besar tidak dapat diselesaikan menggunakan garis Soal dan alternatif penyelesaiannyaHitunglah hasil penjumlahan bilangan â4 + 3 dengan garis bilangan!Alternatif penyelesaian;Sifat-sifat yang berlaku pada operasi penjumlahan bilangan bulat adalah sebagai berikut. 1 Sifat tertutup Penjumlahan bilangan bulat akan selalu menghasilkan bilangan bulat juga atau dapat ditulis jika a dan b Ă B, maka a + b Ă B. Sifat tertutup dapat dinyatakan dalam rumusan berikut. a + b = c; dengan a, b, dan c Ă B 2 Sifat komutatif Sifat komutatif disebut juga sifat pertukaran. Hasil penjumlahan bilangan bulat selalu sama walaupun letak bilangan ditukar. Sifat komutatif dapat dinyatakan dalam rumusan berikut. 3 Sifat asosiatif Sifat asosiatif disebut juga sifat pengelompokkan. Pada operasi penjumlahan bilangan bulat, bilangan-bilangan tersebut dapat dikelompokkan. Sifat asosiatif dapat dinyatakan dalam rumusan berikut. a + b + c = a + b + c 4 Memiliki invers Invers adalah lawan dari suatu bilangan. Hasil penjumlahan bilangan dengan lawannya inversnya adalah unsur identitas, yaitu nol. Sifat invers pada penjumlahan dapat dinyatakan dalam rumusan berikut. 5 Memiliki identitas Jika bilangan bulat dijumlahkan dengan bilangan nol maka hasilnya adalah bilangan itu sendiri. Bilangan nol merupakan unsur identitas pada penjumlahan. Sifat identitas pada penjumlahan dapat dinyatakan dalam rumusan berikut. b. Pengurangan bilangan bulatBerbeda dengan sifat-sifat yang dimiliki oleh operasi penjumlahan pada bilangan bulat, operasi pengurangan pada bilangan bulat dapat dilakukan dengan sifat-sifat berikut!1 Pengurangan bilangan bulat postif dengan bilangan bulat positif. Apabila bilangan pertama lebih besar dari bilangan kedua maka hasilnya bernilai positif, misalnya 6 â 3 = 3. Tetapi apabila bilangan pertama lebih kecil dari bilangan kedua maka hasilnya bernilai negatif, contohnya 4 â 7 = â Pengurangan bilangan bulat postif dengan bilangan bulat negative Pengurangan bilangan bulat positif dengan bilangan bulat negatif akan menghasilkan bilangan bulat negatif. Contoh Alternatif penyelesaiannya Tentukan nilai dari 4 â â5 Alternatif penyelesaian;Pengerjaan pengurangan bilangan bulat positif dan bilangan bulat negatif adalah mengubah operasinya menjadi penjumlahan, yaitu sebagai berikut 4 â â5 = 4 + 5 = 93 Pengurangan bilangan bulat negatif dengan bilangan bulat positifJika kita diminta untuk menyelesaikan permasalahan pengurangan bilangan bulat negatif dengan bilangan bulat positif, maka akan menghasilkan bilangan bulat Alternatif penyelesaiannya Tentukan nilai dari â7 â 4Alternatif penyelesaian;Pengerjaan pengurangan bilangan bulat negatif dengan bilangan bulat positif adalah dengan cara berikut â7 â 4 = â114 Pengurangan bilangan bulat negatif dengan bilangan bulat negatifPenyelesaian pengurangan bilangan bulat negatif dengan bilangan bulat negatif adalah sebagai Alternatif penyelesaiannyaTentukan nilai dari â4 â â6Alternatif penyelesaian;Pengerjaan pengurangan bilangan bulat negatif dengan bilangan bulat negatif adalah dengan mengubah operasi pengurangan menjadi operasi penjumlahan seperti berikut ini â4 â â6 = â4 + 6 = 2 Bahan Diskusi Nungggu TOKEN dari guru. Masukkan TOKEN untuk memulai! Semangat belajar....Semoga bermanfaat.